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Abstract. Parkinson’s disease is a neurodegenerative condition for which the 

early detection is a very challenging activity for the medical community. 

Although traditional methods for Parkinson’s disease diagnosis involve the use 

of EEG (electroencephalographic) activity, previous works have proposed to 

analyze sketches of guided spirals and waves drawn by a patient versus those 

drawn by healthy people. In this work, we made use of the same dataset, 

employing data augmentation techniques for enriching the diversity of the 

images. Besides, architectures such as ResNet50 and VGG19 demonstrated 

promising results using transfer learning. Results reported in this manuscript are 

comparable with those of the stateof-the-art, but also have the potential to 

improve the accuracy in the near future. 

Keywords: Parkinson, CNN, deep learning, machine learning, classification, 

supervised learning. 

1 Introduction 

Parkinson’s disease is a common neurological condition that can significantly disrupt 

a patient’s ability to lead a normal life. It is a progressive neurodegenerative disorder 

that is often challenging to detect in its early stages. Traditional methods of diagnosing 

Parkinson’s disease using EEG (electroencephalogram) data involve laborious and 

time-consuming manual feature extraction. To address this issue, in this article, we 

propose a diagnostic method that can be conducted in a medical office assisted by 

convolutional neural networks (CNN). 

Taking into consideration the clinical presentation of the disease, as discussed in 

previous references, it is possible to diagnose Parkinson’s disease by analyzing the 

dynamics of sketching guided spirals and waves drawn by a patient on a sheet of paper. 

We used the database published by Zham et al. (2017) [12], which is composed by a 

set of images of sketches labeled by healthcare professionals into categories of healthy 

patients and patients with Parkinson’s disease. 
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1.1 Related Work 

The prevailing method extensively employed by medical professionals in clinical 

settings for diagnosing Parkinson’s Disease involves assessing and evaluating patients 

through a review of their medical history. This assessment often leads to the assignment 

of a rating scale based on the patient’s performance. The predominant rating system in 

use to date is the Unified Parkinson Disease Rating Scale (UPDRS), as introduced by 

Goetz and Stebbins in 2004. [5]. Based on the work done by Goets and Stebbins, Sa, 

W. et al. in 2003 [9] argued that bradykinesia and other motor symptoms play a 

fundamental roll in opportune clinic Parkinson´s diagnosis. 

Numerous studies have highlighted the direct connection between Parkinson’s 

disease and symptoms related to motor function disorders, such as rigidity, tremors, 

and bradykinesia. Rigidity and bradykinesia are often evident in the early stages of the 

disease and affect a patient’s ability to write and sketch. Research indicates that an 

individual’s handwriting is influenced by factors like education, knowledge, and 

language proficiency (Zham et al., 2017) [12]. 

In contrast, the sketching of spiral and wave drawings serves as independent and 

noninvasive measures. Extracting features from handwritten sketches can be dynamic, 

facilitating real-time and dependable analysis. This approach also allows for the 

development of applications capable of extracting these features through online 

patient assessments. 

Some related work that makes use of Machine Learning related techniques are 

referenced in Table 1 1. One of the most outstanding results found in the state-of-the-

art is the research made by Gil Martín et al. (2019) [4]. This study contributes to this 

endeavor by examining the application of a convolutional neural network (CNN) for 

the detection of Parkinson’s disease based on drawing movements. The CNN comprises 

two key components: feature extraction, which involves convolutional layers, and 

classification, implemented through fully connected layers. 

Table 1. Summary table of the results found in the literature for the detection of Parkinson’s 

disease. The table specifies the techniques and specific tasks reported in each case. 

Reference Tasks Methodology ACC 

Vatsaraj and 
Nagare [11] 

Spiral and wave analysis CNN 96.7% 

Zham 
et al. [12] 

Guided spiral 
Naïve Bayes with features 

in handwriting 
93.3% 

Gallicchio 
et al. [3] 

Spirals and stability movement 
Deep Echo 

State Networks 
89.3% 

Gil Martín 
et al. [4] 

Spirals and stability movement CNN 96.5% 

Khatamino 
et al. [7] 

Spirals and stability movement CNN 72.5% 

Chakraborty 
et al. [1] 

Spirals and wave analysis CNN 93.3% 
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The inputs to the CNN consist of the Fast Fourier Transform module, focusing on 

frequencies within the 0 Hz to 25 Hz range.We assessed the discriminative capacity of 

various directions during drawing movements and found that the X and Y directions 

yielded the most favorable outcomes. This analysis was conducted using a publicly 

available dataset: the Parkinson Disease Spiral Drawings Using Digitized Graphics 

Tablet dataset. The most noteworthy results obtained in this study demonstrate an 

accuracy of 96.5%. In other hand, the top result found in literature is obtained by 

Vatsaraj and Nagare (2021) [11]. 

In this research, the team explore this biomarker by scrutinizing the sketching 

patterns evident in spiral and wave drawings produced by both healthy subjects and 

Parkinson’s disease patients. Additionally, this study introduces optimizations to 

algorithms for feature extraction and classification. Notably, the proposed model 

exhibits an accuracy of 96.67%, alongside a precision of 93.33% and a recall of 100%. 

Additionally, Parkinson’s disease (PD) is a neurodegenerative condition characterized 

by frequently changing motor symptoms. 

The effective monitoring of these symptoms is crucial for tailoring treatment to 

individual patients. Donié et al. (2023) [9] mention that traditional time series 

classification (TSC) and deep learning methods have limitations when applied to PD 

symptom monitoring using data from wearable accelerometers. This is primarily due to 

the complexity of PD movement patterns and the limited size of datasets. In the state-

of-the-art, we will find some achievements boarding various techniques. The 

 

Fig. 1. Results for ResNet50. 

 

Fig. 2. Results for VGG19. 
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mentioned techniques take advantage of specific aspects seen on the Parkinson’s 

clinical picture. For instance, Taylan et al. (2020) [10], mention that there has been a 

growing promise in the use of various statistical regression models for diagnosing 

neurodegenerative conditions such as Parkinson’s disease. 

Nevertheless, when experimental data includes outlier observations that 

significantly deviate from the rest of the data points, traditional and widely recognized 

statistical regression models can yield inaccurate results for neurodegenerative disease 

diagnosis. In that sense, Dabbabi et al. (2023) [2], considered vocal cord disorders that 

are often considered a prominent contributor to Parkinson’s disease in many 

individuals, with speech impairments serving as one of the initial indicators of 

this condition. 

In their study, they propose a model using VOT-MFCC as the primary feature and 

employs a Fully-Connected Deep Neural Network (FC-DNN) as the classifier; with 

encouraging results. Also, in the matter of Parkinson’s detection via Machine Learning, 

in the state-of-the-art we might find promising results. Kumar et al. (2023) [8] reported 

Deep Learning techniques proposed as a means to streamline the Parkinson’s detection 

process and enhance accuracy. 

YAMNet, a computationally efficient deep-learning model designed for audio 

categorization, was employed to extract features from a speech signals dataset related 

to Parkinson’s disease. The study assessed the effectiveness and precision of 

 

Fig. 3. Results for DenseNet121. 

 

Fig. 4. Results for MovileNetV2. 
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the predictions. By analyzing speech signals, the research aimed to develop a precise 

and efficient tool for early detection and management of the disease, achieving an 

accuracy rate near to 82%. This underscores the potential of using speech signals as a 

diagnostic tool for Parkinson’s disease. 

In the same way, Gomez et al. (2023) [6], mentioned that Patients afflicted with 

Parkinson’s disease (PD) commonly exhibit reduced facial movements, so in their 

study, they use three distinct approaches are explored to model the facial expressions 

of individuals with PD: (i) facial analysis using single images as well as sequences of 

images, (ii) employing transfer learning from facial analysis to recognize action units, 

and (iii) implementing triplet-loss functions to enhance the automated classification of 

PD patients and healthy subjects. The investigators also reported 82% as their 

best accuracy. 

2 Methods 

2.1 Data Augmentation 

The dataset used in this work corresponds to the results achieved by Zhan et al. (2017) 

[12]. In this research, the study introduces a novel approach by utilizing the Composite 

Index of Speed and Pen-pressure (CISP) from sketching as a potential feature for 

 

Fig. 5. Results for VGG 16. 

 

Fig. 6. Results for ResNet 101. 
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assessing the severity of Parkinson’s disease (PD). The study involved a total of 55 

participants, comprising 28 individuals in the control group (CG) and 27 PD patients. 

The results include a public database composed of 102 images of sketched waves 

categorized in two classes: Parkinson and healthy. Given the limited size of the 

database, data augmentation techniques in the context of image data preprocessing for 

deep learning were applied. 

The first step involves rescaling the pixel values of the images to a standardized 

range of [0, 1], a routine pre-processing step to ensure that the neural network receives 

data in a consistent format. The rotation range parameter allows each image to be 

randomly rotated within a range of 40 degrees in both clockwise and counterclockwise 

directions. This augments the dataset by introducing variations in object orientations, 

simulating the real-world diversity of image capture. 

Furthermore, the width shift range and height shift range parameters permit 

horizontal and vertical shifts of up to 20% of the total image width and height, 

respectively. These mimics the effects of different object placements within the frame, 

making the model more adaptable to such changes. 

Shear transformations are introduced with the shear range parameter, allowing for 

slanting along the horizontal axis within a 20% range. This emulates perspective 

changes and adds to the dataset’s diversity. Zooming in and out, a common source of 

 

Fig. 7. Results for Inception V3 

 

Fig. 8. Results for Inception ResNet. 
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variation in real-world images, is achieved with the zoom range parameter set to 20%. 

This helps the model handle variations in object size and distance. Finally, horizontal 

flip is enabled, enabling random horizontal flipping of images. 

This is useful for scenarios where objects can appear in a mirrored orientation. In 

summary, these data augmentation techniques are invaluable for enhancing the 

performance and robustness of deep learning models, particularly when faced with 

limited training data. By simulating various real-world conditions and image variations 

during training, the model becomes better equipped to generalize its learning to unseen 

data, leading to more accurate and reliable predictions in practical applications. 

2.2 Transfer Learning with Early Stop Implementation for Binary Classification 

A deep learning model tailored for binary classification has been carried out using 

transfer learning. It leverages the architectures ResNet50, VGG19, DenseNet121, 

MobileNetV2, VGG16, ResNEt101, InceptionV3, InceptionResNEtV2, MobileNEt, 

NasNetLarge and ConvNeXtLarge. Those arquitectures come pre-equipped with 

weights from ImageNet. In all cases, the last 30% layers of the respective architecture 

were unfrozen for the training stage, while the other layers remained frozen. 

Additionally, “top” layers were added at the end of the network for binary 

 

Fig. 9. Results for MobileNet. 

 

Fig. 10. Results for NasNet large. 
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classification. The purpose of this model is to serve as a feature extractor. The base 

model is then subjected to a process known as fine-tuning, wherein a selective set of its 

last 30% layers is unfrozen for further training. 

This selective approach allows the upper layers to adapt to the task’s specific 

requirements while keeping the remaining layers frozen, preserving the knowledge 

learned from ImageNet. To form the complete classification model, the base model is 

integrated into a Sequential architecture. This is achieved through a series of operations, 

commencing with a Flatten layer, which reshapes the feature maps obtained from the 

base model into a one-dimensional vector. This is followed by the introduction of two. 

Dense layers; the first one incorporates 256 units and a ReLU activation function, 

while the final layer consists of a single unit with a sigmoid activation function, suitable 

for binary classification. The Adam optimizer was set with a specified learning rate, the 

utilization of binary cross-entropy as the loss function, and the adoption of accuracy as 

the evaluation metric. Finally, an early stopping mechanism is implemented, serving as 

a safeguard against overfitting by monitoring the validation loss and terminating the 

training process if the loss fails to improve over a predetermined number of epochs. The 

mechanism ensures that the model is restored to its most optimal state during training. 

3 Results 

In Table 2, a summary of the numerical results is found. The performance graphs for 

loss and accuracy during training and validation stages are presented. The obtained 

results evaluate the performance of various Convolutional Neural Network (CNN) 

algorithms for a specific task. The task involved the classification of data, and the 

metrics used for evaluation included both training and validation accuracy, as well as 

training and validation loss, along with the corresponding best epoch. 

4 Discussion 

In table 2, we find the results obtained for train accuracy, validation accuracy, train 

loss, validation loss, and best epoch. We observe that the best results for validation 

 

Fig. 11. Results for ConvNext large. 
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accuracy were achieved after implementing the model in conjunction with the 

ResNet50 architecture and the specifications described in the methodology section (2). 

Regarding the state-of-the-art, Table 1 shows that the best result obtained for the wave 

analysis task is reported by Vatsaraj and Nagare (2021) [11] with a 96.7% accuracy. 

In comparison to the results achieved in this study, the absolute difference between 

the two results corresponds to 3.27%. Additionally, the same absolute difference is 

observed after the implementation of the model combined with the architectures 

VGG19, DenseNEt121, MobileNetV2 and VGG16. Considering the dataset’s size, the 

results reveal consistency in the model. Nevertheless, it is necessary to highlight the 

fact that the best results in this study were obtained after implementing fewer complex 

architectures, which is consistent with what was reported by Vatsaraj and Nagare 

(2021) [5]. 

Therefore, for future research, it is suggested to use or build networks with fewer 

convolutional layers in order to get closer to the 96.7% reported in the state-of-the-art. 

ResNet50, which is known for its depth, demonstrated the highest training accuracy at 

95.38%. This suggests that the model learned the training data effectively and can 

capture complex patterns. However, it exhibited a slightly lower validation accuracy of 

93.33%, indicating that it may have encountered some overfitting, as the validation 

accuracy is slightly lower than the training accuracy. 

The training and validation losses of ResNet50 were 0.1202 and 0.2997, 

respectively, and the best epoch was achieved at 38. These results indicate a good 

balance between model complexity and generalization, making ResNet50 a strong 

candidate for this task. VGG19, another deep architecture, demonstrated a relatively 

high training accuracy of 87.50% but reached an even higher validation accuracy of 

93.33%. This suggests that VGG19 achieved good generalization performance. The 

training and validation losses were 0.3729 and 0.3049, respectively, and the best epoch 

occurred at 29. 

These results indicate that VGG19 managed to generalize well without overfitting, 

Table 2. Results obtained after the model implementation for different model architectures. 

CNN 
Algorithms 

Train 
ACC 

Validation 
ACC 

Train 
Loss 

Validation 
Loss 

Best 
Epoch 

ResNet50 0.9538 0.9333 0.1202 0.2997 38 

VGG19 0.8750 0.9333 0.3729 0.3049 29 

DenseNet121 0.8194 0.9333 0.4092 0.2418 24 

MobileNetV2 0.7500 0.9333 0.4959 0.3821 10 

VGG16 0.7361 0.9333 0.5642 0.4207 12 

ResNet101 0.8889 0.9000 0.2230 0.2359 34 

Inceptionv3 0.8056 0.8999 0.4205 0.3009 7 

InceptionResNetV2 0.7778 0.8999 0.4959 0.4038 13 

MobileNet 0.7917 0.8666 0.4480 0.4726 17 

NastNetLarge 0.7222 0.8333 0.6110 0.4428 4 

ConvNeXtXLarge 0.7361 0.8333 0.5299 0.6267 12 
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making it a promising choice for this task. DenseNet121 exhibited an 81.94% training 

accuracy and a 93.33% validation accuracy. Its training and validation losses were 

0.4092 and 0.2418, and the best epoch was at 24. DenseNet121 demonstrated robust 

generalization performance with a slightly lower training accuracy but consistent 

validation accuracy, suggesting its effectiveness in capturing relevant features. 

MobileNetV2, VGG16, and ResNet101 showed varying performance with training 

and validation accuracies of 75.00% to 88.89%. MobileNetV2 had the highest training 

loss, indicating room for improvement in its ability to capture features effectively. On 

the other hand, VGG16 and ResNet101 showed better balance in terms of losses. 

Inceptionv3, InceptionResNetV2, MobileNet, NastNetLarge, and ConvNeXtXLarge 

exhibited performance below the 90% accuracy threshold. These models may require 

further optimization or modifications to improve their classification capabilities. 

The results provide insights into the suitability of different CNN architectures for 

the given task. ResNet50 and VGG19 demonstrated strong performance, while other 

models showed varying degrees of success. The choice of the best model depends on 

the specific trade-off between training and validation accuracy, as well as 

considerations of overfitting and generalization. Further investigations and fine-tuning 

may be necessary to enhance the performance of some models. 

5 Conclusion 

Parkinson’s disease is a common neurological condition that can significantly 

disrupt a patient’s ability to lead a normal life. It is a progressive neurodegenerative 

disorder that is often challenging to detect in its early stages. Traditional diagnostic 

methods, particularly those using electroencephalogram (EEG) data, are often time-

consuming and challenging to apply in the early stages of the disease. Parkinson’s 

disease is associated with distinctive motor symptoms, we introduced an approach that 

analyzes sketching patterns in guided spirals and waves drawn by patients. By applying 

CNNs, we aimed to facilitate a more efficient and accessible diagnostic process. 

This work was based on a dataset provided by Zham et al. (2017) [12] that included 

sketches categorized as Parkinson’s or healthy. To address the limited size of the 

dataset, we employed data augmentation techniques, preparing the images for deep 

learning analysis. Transfer learning was then applied using pre-trained CNN 

architectures, where the top layers were tailored for binary classification. Regarding the 

results obtained, ResNet50 and VGG19 exhibited strong performance. 

ResNet50 achieved the highest training accuracy. This suggests the model’s ability 

to capture complex patterns yet, the validation accuracy was slightly lower, indicating 

the possibility of overfitting. On the other hand, VGG19 showed a good balance 

between training and validation accuracy. 

By another hand, DenseNet121 demonstrated robust generalization performance, 

making it a promising choice for the Parkinson´s diagnosis. Also, the experimentation 

showed that MobileNetV2, VGG16, and ResNet101 showed varying performance but 

indicated potential for improvement. Finally; Inceptionv3, InceptionResNetV2, 

MobileNet, NastNetLarge, and ConvNeXtXLarge had accuracies below the desired 

threshold. This suggests that these models may require further optimization or 

modifications to enhance their classification capabilities. 
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Considering the previous and comparing the found results to the state-of-theart, we 

found a discrepancy of 3.27% in accuracy. Notably, Vatsaraj and Nagare (2021) [11] 

achieved an accuracy of 96.7%. To approach this level of accuracy in future research, 

it is suggested that models with fewer convolutional layers be explored. 
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